Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 3-carboxy-7-(*tert*-butoxy-carbonyl)-4,7-diazaheptanoate

Jia-Ying Xu,^a Zhen-Yi Wu,^b Wen-Yuan Wu,^a Su-Lan Dong^a and Jin-Tang Wang^a*

^aDepartment of Applied Chemistry, College of Science, Nanjing University of Technology, Nanjing 210009, People's Republic of China, and ^bChemical Science and Technology, Central Research Institute of China, Beijing 100011, People's Republic of China

Correspondence e-mail: wjt@njut.edu.cn

Received 25 May 2007; accepted 28 May 2007

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.057; wR factor = 0.129; data-to-parameter ratio = 8.5.

In the molecule of the title compound, $C_{12}H_{22}N_2O_6$, the dihedral angle between the planar carbamoyloxy and ester C-COO units is 22.23 (3)°. In the crystal structure, intermolecular O-H···N and N-H···O hydrogen bonds link the molecules into chains.

Related literature

For bond-length data, see: Allen et al. (1987).

Experimental

Crystal data

$C_{12}H_{22}N_2O_6$	V = 1469.6 (5) Å ³
$M_r = 290.32$	Z = 4
Orthorhombic, <i>Pca</i> 2 ₁	Mo $K\alpha$ radiation
a = 10.824 (2) Å	$\mu = 0.11 \text{ mm}^{-1}$
b = 15.204 (3) Å	T = 298 (2) K
c = 8.9300 (18) Å	$0.40 \times 0.30 \times 0.10 \text{ mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min} = 0.954, \ T_{\max} = 0.990$
1921 measured reflections

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.129$ S = 0.901540 reflections 1540 independent reflections 984 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ 3 standard reflections every 200 reflections intensity decay: none

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$ \begin{array}{c} \text{O3}-\text{H3}\cdots\text{N2}^{\text{i}}\\ \text{N1}-\text{H1}\cdots\text{O3}^{\text{ii}}\\ \text{N2}-\text{H2}\cdots\text{O3}^{\text{ii}}\\ \text{N2}-\text{H2}\cdots\text{O3}^{\text{iii}}\\ \text{N3}-\text{H3}\cdots\text{O4}^{\text{iii}}\\ \end{array} $	0.82 0.86 0.86	2.21 2.01 2.48 2.50	3.001 (6) 2.849 (8) 3.128 (8) 2.060 (6)	161 166 132
$112 - 112 \cdots 04$	0.00	2.50	5.000 (0)	123

Symmetry codes: (i) $x + \frac{1}{2}, -y + 1, z$; (ii) $-x + 2, -y + 1, z + \frac{1}{2}$; (iii) $x - \frac{1}{2}, -y + 1, z$.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *SHELXTL* (Bruker, 2000); software used to prepare material for publication: *SHELXTL*.

The authors thank the Analysis Centre, Nanjing University, for carrying out the X-ray crystallographic analysis.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HK2260).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2000). SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
- Enraf–Nonius (1989). *CAD-4 Software*. Version 5.0. Enraf–Nonius, Delft, The Netherlands.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351– 359.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

supplementary materials

Acta Cryst. (2007). E63, o3079 [doi:10.1107/81600536807025871]

Methyl 3-carboxy-7-(tert-butoxycarbonyl)-4,7-diazaheptanoate

J.-Y. Xu, Z.-Y. Wu, W.-Y. Wu, S.-L. Dong and J.-T. Wang

Comment

In the process of synthesis, we obtained the title compound, (I), and we herein report its crystal structure.

In the molecule of (I), (Fig. 1), the bond lengths and angles are within normal ranges (Allen *et al.*, 1987). The dihedral angle between the planar (O1/O2/N1/C5) and (O5/O6/C10/C11) units is 22.23 (3)°.

In the crystal structure, the intermolecular O—H···N and N—H···O hydrogen bonds (Table 1) link the molecules into chains, in which they may be effective in the stabilization of the structure.

Experimental

For the preparation of the title compound, maleic anhydride (10 g, 100 mmol) and methanol (50 ml) were added into a four-necked round-bottom flask fitted with a mechanical stirrer, dropping funnel and thermometer. After the mixture was refluxed in a water bath for 30 min, excess methanol was distilled off. Triethylamine (20 ml) was added to the reside, cooled in ice, and stirred very slowly. Then, *N*-(*tert*-butoxycarbonyl)-1,2-ethane diamine (16 g, 100 mmol) was added, and the mixture was stirred in a water bath for 2 h. The mixture was filtrated and washed twice with hot acetone (100 ml). Crystals of (I) suitable for X-ray analysis were obtained by slow evaporation of methanol (10 ml) (yield; 23.5 g, 72%, m.p. 454 K).

Refinement

H atoms were positioned geometrically, with O—H = 0.82 Å (for OH), N—H = 0.86 Å (for NH) and C—H = 0.98, 0.97 and 0.96 Å for methine, methylene and methyl H, respectively, and constrained to ride on their parent atoms, with $U_{iso}(H) = xU_{eq}(C,N,O)$, where x = 1.5 for NH and methyl H atoms, and x = 1.2 for all other H atoms.

Figures

Fig. 1. The molecular structure of the title molecule, with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Fig. 2. A packing diagram for (I). Hydrogen bonds are shown as dashed lines.

Methyl 3-carboxy-7-(tert-butoxycarbonyl)-4,7-diazaheptanoate

Crystal data	
$C_{12}H_{22}N_2O_6$	$D_{\rm x} = 1.312 {\rm ~Mg} {\rm ~m}^{-3}$
$M_r = 290.32$	Melting point: 454 K
Orthorhombic, <i>Pca</i> 2 ₁	Mo $K\alpha$ radiation $\lambda = 0.71073$ Å
Hall symbol: P 2c -2ac	Cell parameters from 25 reflections
a = 10.824 (2) Å	$\theta = 9-12^{\circ}$
b = 15.204 (3) Å	$\mu = 0.11 \text{ mm}^{-1}$
c = 8.9300 (18) Å	T = 298 (2) K
$V = 1469.6 (5) \text{ Å}^3$	Block, colourless
Z = 4	$0.40\times0.30\times0.10\ mm$
$F_{000} = 624$	

Data collection

Enraf–Nonius CAD-4 diffractometer	$R_{\rm int} = 0.042$
Radiation source: fine-focus sealed tube	$\theta_{\text{max}} = 26.0^{\circ}$
Monochromator: graphite	$\theta_{\min} = 1.3^{\circ}$
T = 298(2) K	$h = 0 \rightarrow 13$
$\omega/2\theta$ scans	$k = 0 \rightarrow 18$
Absorption correction: ψ scan (North <i>et al.</i> , 1968)	$l = 0 \rightarrow 10$
$T_{\min} = 0.954, \ T_{\max} = 0.990$	3 standard reflections
1921 measured reflections	every 200 reflections
1540 independent reflections	intensity decay: none
984 reflections with $I > 2\sigma(I)$	

Refinement

Refinement on F^2	H-atom parameters constrained
Least-squares matrix: full	$w = 1/[\sigma^2(F_o^2) + (0.059P)^2 + 3.5659P]$ where $P = (F_o^2 + 2F_c^2)/3$
$R[F^2 > 2\sigma(F^2)] = 0.057$	$(\Delta/\sigma)_{max} < 0.001$

 $wR(F^2) = 0.129$ $\Delta \rho_{max} = 0.23 \text{ e} \text{ Å}^{-3}$ S = 0.90 $\Delta \rho_{min} = -0.13 \text{ e} \text{ Å}^{-3}$ 1540 reflectionsExtinction correction: none182 parametersPrimary atom site location: structure-invariant direct
methodsSecondary atom site location: difference Fourier mapHydrogen site location: inferred from neighbouring
sites

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2 \operatorname{sigma}(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on F, and R– factors based on ALL data will be even larger.

Fractional atomic coordinates and	isotropic or equivalent	isotropic displacement	parameters $(Å^2)$

	x	у	Ζ	$U_{\rm iso}*/U_{\rm eq}$
01	0.9191 (4)	0.8093 (3)	0.6834 (6)	0.0502 (12)
O2	0.9209 (5)	0.8738 (3)	0.4545 (6)	0.0675 (15)
O3	1.1376 (4)	0.4304 (3)	0.1506 (6)	0.0587 (15)
H3	1.2097	0.4253	0.1777	0.088*
O4	1.1218 (3)	0.5130 (3)	0.3553 (5)	0.0538 (12)
O5	0.8910 (4)	0.3791 (3)	0.4610 (6)	0.0600 (13)
O6	0.7747 (4)	0.2899 (3)	0.3195 (6)	0.0562 (13)
N1	0.8734 (5)	0.7303 (4)	0.4871 (7)	0.0542 (15)
H1	0.8748	0.6869	0.5487	0.065*
N2	0.8842 (4)	0.5550 (3)	0.3022 (6)	0.0385 (13)
H2	0.8391	0.5417	0.3782	0.046*
C1	0.8483 (4)	0.9585 (4)	0.7424 (5)	0.072 (3)
H1B	0.8520	0.9787	0.6407	0.108*
H1C	0.8605	1.0072	0.8091	0.108*
H1A	0.7690	0.9325	0.7610	0.108*
C2	0.9464 (4)	0.8585 (4)	0.9272 (5)	0.070 (3)
H2B	1.0113	0.8162	0.9403	0.105*
H2C	0.8682	0.8314	0.9484	0.105*
H2A	0.9591	0.9070	0.9944	0.105*
C3	1.0736 (4)	0.9238 (4)	0.7211 (4)	0.070 (2)
H3A	1.0700	0.9451	0.6200	0.105*
H3B	1.1318	0.8763	0.7272	0.105*
H3C	1.0991	0.9706	0.7864	0.105*

supplementary materials

C4	0.9472 (4)	0.8915 (4)	0.7681 (5)	0.055 (2)
C5	0.9062 (4)	0.8111 (4)	0.5360 (5)	0.0466 (17)
C6	0.8359 (4)	0.7149 (4)	0.3337 (4)	0.065 (2)
H6A	0.8419	0.7698	0.2786	0.078*
H6B	0.7499	0.6969	0.3328	0.078*
C7	0.9117 (4)	0.6461 (4)	0.2543 (4)	0.0552 (19)
H7A	0.8972	0.6509	0.1474	0.066*
H7B	0.9986	0.6579	0.2720	0.066*
C8	0.9439 (4)	0.4897 (4)	0.2033 (4)	0.0359 (14)
H8	0.9422	0.5149	0.1023	0.043*
C9	1.0804 (4)	0.4764 (4)	0.2425 (5)	0.0365 (14)
C10	0.8706 (4)	0.4040 (4)	0.1954 (4)	0.0362 (14)
H10A	0.7907	0.4162	0.1507	0.043*
H10B	0.9209	0.3647	0.1354	0.043*
C11	0.8504 (4)	0.3591 (4)	0.3417 (4)	0.0420 (15)
C12	0.7384 (4)	0.2387 (4)	0.4468 (5)	0.070 (2)
H12A	0.8051	0.2366	0.5175	0.105*
H12B	0.7182	0.1801	0.4152	0.105*
H12C	0.6674	0.2652	0.4931	0.105*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	0.046 (3)	0.045 (2)	0.059 (3)	-0.009 (2)	-0.003 (3)	-0.002 (2)
O2	0.086 (4)	0.050 (3)	0.067 (4)	-0.005 (3)	0.000 (3)	0.013 (3)
O3	0.025 (2)	0.052 (3)	0.099 (4)	0.002 (2)	0.016 (3)	-0.012 (3)
O4	0.0221 (18)	0.092 (4)	0.047 (3)	-0.010 (2)	-0.008 (2)	0.009 (3)
O5	0.049 (3)	0.076 (3)	0.055 (3)	-0.013 (2)	-0.007 (3)	-0.005 (3)
O6	0.049 (3)	0.058 (3)	0.062 (3)	-0.015 (2)	0.010 (3)	-0.010 (3)
N1	0.061 (4)	0.048 (3)	0.053 (4)	0.008 (3)	-0.009 (3)	-0.006 (3)
N2	0.020 (2)	0.050 (3)	0.045 (3)	0.001 (2)	-0.001 (2)	0.002 (3)
C1	0.051 (5)	0.067 (5)	0.102 (9)	0.024 (4)	-0.010 (6)	-0.022 (6)
C2	0.049 (4)	0.087 (7)	0.074 (6)	-0.011 (4)	0.004 (4)	-0.028 (5)
C3	0.045 (4)	0.061 (4)	0.104 (7)	-0.006 (3)	-0.008 (5)	-0.008 (5)
C4	0.034 (3)	0.047 (4)	0.082 (6)	0.002 (3)	-0.007 (4)	-0.018 (4)
C5	0.027 (3)	0.061 (5)	0.052 (4)	0.005 (3)	0.003 (3)	0.008 (4)
C6	0.071 (5)	0.067 (5)	0.059 (5)	0.025 (4)	-0.011 (5)	-0.002 (5)
C7	0.076 (5)	0.049 (4)	0.041 (4)	0.011 (4)	-0.002 (4)	0.006 (3)
C8	0.018 (2)	0.045 (3)	0.044 (4)	0.001 (2)	0.001 (3)	0.000 (3)
C9	0.018 (2)	0.047 (3)	0.044 (4)	0.005 (3)	-0.001 (3)	0.002 (3)
C10	0.021 (3)	0.052 (3)	0.036 (3)	-0.001 (3)	-0.001 (3)	-0.008 (3)
C11	0.020 (3)	0.052 (4)	0.054 (4)	0.003 (3)	0.002 (3)	-0.016 (4)
C12	0.058 (4)	0.070 (4)	0.083 (6)	-0.004 (4)	0.029 (5)	-0.002 (5)

Geometric parameters (Å, °)

O1—C5	1.324 (8)	C2—H2C	0.9600
O1—C4	1.492 (8)	C2—H2A	0.9600
O2—C5	1.211 (8)	C3—C4	1.513 (9)

O3—C9	1.244 (7)	С3—НЗА	0.9600
O3—H3	0.8200	С3—Н3В	0.9600
04—C9	1.235 (7)	С3—Н3С	0.9600
O5—C11	1.192 (8)	C6—C7	1.508 (9)
O6—C11	1.348 (7)	С6—Н6А	0.9700
O6—C12	1.433 (8)	С6—Н6В	0.9700
N1—C5	1.351 (8)	С7—Н7А	0.9700
N1—C6	1.448 (10)	С7—Н7В	0.9700
N1—H1	0.8600	C8—C9	1.531 (7)
N2—C8	1.477 (7)	C8—C10	1.528 (7)
N2—C7	1.479 (8)	С8—Н8	0.9800
N2—H2	0.8600	C10-C11	1.491 (9)
C1—C4	1.495 (9)	C10—H10A	0.9700
C1—H1B	0.9600	C10—H10B	0.9701
C1—H1C	0.9600	C12—H12A	0.9600
C1—H1A	0.9600	C12—H12B	0.9600
C2—C4	1.507 (11)	C12—H12C	0.9600
C2—H2B	0.9600		
C5—O1—C4	120.5 (6)	N1—C6—C7	113.8 (6)
С9—О3—Н3	109.5	N1—C6—H6A	108.8
C11—O6—C12	118.3 (6)	С7—С6—Н6А	108.8
C5—N1—C6	121.8 (6)	N1—C6—H6B	108.8
C5—N1—H1	119.1	С7—С6—Н6В	108.8
C6—N1—H1	119.1	Н6А—С6—Н6В	107.7
C8—N2—C7	111.6 (5)	N2—C7—C6	113.8 (6)
C8—N2—H2	124.2	N2—C7—H7A	108.8
C7—N2—H2	124.2	С6—С7—Н7А	108.8
C4—C1—H1B	109.5	N2—C7—H7B	108.8
C4—C1—H1C	109.5	С6—С7—Н7В	108.8
H1B—C1—H1C	109.5	H7A—C7—H7B	107.7
C4—C1—H1A	109.5	N2—C8—C9	112.0 (5)
H1B—C1—H1A	109.5	N2-C8-C10	111.9 (4)
H1C—C1—H1A	109.5	C9—C8—C10	113.5 (5)
C4—C2—H2B	109.5	N2—C8—H8	106.3
C4—C2—H2C	109.5	С9—С8—Н8	106.3
H2B—C2—H2C	109.5	С10—С8—Н8	106.3
C4—C2—H2A	109.5	O4—C9—O3	127.6 (5)
H2B—C2—H2A	109.5	O4—C9—C8	118.5 (5)
H2C—C2—H2A	109.5	O3—C9—C8	113.9 (6)
С4—С3—Н3А	109.5	C11—C10—C8	115.2 (5)
С4—С3—Н3В	109.5	C11—C10—H10A	108.5
НЗА—СЗ—НЗВ	109.5	C8—C10—H10A	108.6
С4—С3—Н3С	109.5	C11—C10—H10B	106.5
НЗА—СЗ—НЗС	109.5	C8—C10—H10B	105.1
НЗВ—СЗ—НЗС	109.5	H10A—C10—H10B	113.0
O1—C4—C1	110.3 (6)	O5—C11—O6	123.7 (7)
O1—C4—C2	101.5 (6)	O5—C11—C10	127.8 (5)
C1—C4—C2	111.5 (7)	O6—C11—C10	108.5 (6)
O1—C4—C3	108.4 (6)	O6—C12—H12A	109.5

supplementary materials

C1—C4—C3	112.5 (6)	O6-C12-H12B	109.5
C2—C4—C3	112.0 (6)	H12A—C12—H12B	109.5
O2—C5—O1	126.9 (7)	O6-C12-H12C	109.5
O2—C5—N1	123.8 (7)	H12A—C12—H12C	109.5
O1—C5—N1	109.3 (6)	H12B—C12—H12C	109.5
C5-01-C4-C1	58.8 (9)	C7—N2—C8—C10	-150.7 (5)
C5—O1—C4—C2	177.1 (6)	N2—C8—C9—O4	6.5 (8)
C5—O1—C4—C3	-64.9 (7)	C10-C8-C9-O4	-121.5 (6)
C4—O1—C5—O2	4.1 (10)	N2—C8—C9—O3	-171.6 (5)
C4	-176.0 (5)	C10—C8—C9—O3	60.5 (7)
C6—N1—C5—O2	-8.8 (10)	N2-C8-C10-C11	-58.4 (6)
C6—N1—C5—O1	171.2 (6)	C9—C8—C10—C11	69.6 (6)
C5—N1—C6—C7	123.3 (7)	C12—O6—C11—O5	1.6 (8)
C8—N2—C7—C6	169.8 (5)	C12	-177.6 (5)
N1—C6—C7—N2	74.1 (8)	C8—C10—C11—O5	-5.2 (8)
C7—N2—C8—C9	80.5 (6)	C8-C10-C11-O6	173.9 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	$D\!\!-\!\!\mathrm{H}^{\ldots}\!A$
O3—H3···N2 ⁱ	0.82	2.21	3.001 (6)	161
N1—H1···O3 ⁱⁱ	0.86	2.01	2.849 (8)	166
N2—H2···O3 ⁱⁱ	0.86	2.48	3.128 (8)	132
N2—H2···O4 ⁱⁱⁱ	0.86	2.50	3.060 (6)	123
	1/2 () 1/2			

Symmetry codes: (i) *x*+1/2, -*y*+1, *z*; (ii) -*x*+2, -*y*+1, *z*+1/2; (iii) *x*-1/2, -*y*+1, *z*.

